30,000次循环剥离!揭示水凝胶超高抗疲劳粘接
2020-02-28
水凝胶材料和生物组织在结构和组成上有着高度的相似性,被认为是人机交互界面的理想材料之一。虽然研究人员已经实现水凝胶与各类基底材料的高韧性粘接,这类高韧性水凝胶粘接在多次循环加载下依然会发生疲劳断裂,其界面疲劳阈值通常只有1-100 J/m2。近日,麻省理工学院赵选贺团队揭示抗疲劳水凝胶粘接原理:在黏合界面引入高能量单元例如有序纳米晶域,可以显著提高水凝胶粘接的抗疲劳性能,其界面疲劳阈值能够达到800 J/m2。这一普适的设计原理可以进一步用于指导并开发具有长期使用价值的水凝胶设备和器械,如水凝胶涂层、人工关节等。
水凝胶抗疲劳粘结
水凝胶正被广泛应用于医疗器械和生物电子设备等领域,具体应用包括可穿戴水凝胶电子,口服水凝胶胶囊,水凝胶涂层,以及水凝胶软体机器人等。由于表面水分的存在,水凝胶材料很难实现与工程材料的粘合。MIT赵选贺团队在2015年提出水凝胶坚韧粘结原理(Nature Materials, 15, 90):界面高分子链锚定和水凝胶内部能量耗散需要协同作用(图1),并实现界面粘合韧性超过1,000 J/m2。虽然该原理已经被广泛使用,但是这类高韧性水凝胶粘接并不具备抗疲劳特性。如图1所示,在反复加载下,水凝胶内部的能量耗散会显著降低,其界面疲劳阈值 (即界面疲劳裂纹拓展所需要的最小断裂能) 只有68 J/m2。
图1. a) 高韧性水凝胶粘接的设计原理。通过界面高分子链的化学锚定和凝胶内部能量耗散的协同作用,实现界面粘合韧性最高可达1,000 J/m2 (Nat. Mater., 15, 190)。b) 高韧性水凝胶粘接的疲劳裂纹扩展曲线。
赵选贺团队在2019年提出抗疲劳水凝胶材料的设计原理(Sci. Adv., 5, eaau8528 (2019); PNAS 116, 10244(2019)):让疲劳裂纹在扩展中遇到并且破坏比一层高分子链强韧很多的物质,例如纳米晶域,纳米纤维等,成功实现水凝胶软材料自身的疲劳阈值达1250 J/m2(图2)。然而,如何设计具有抗疲劳断裂的水凝胶粘接仍旧是软材料领域一个亟待解决的难题。
图2. 抗疲劳水凝胶的设计原理:让疲劳裂纹在扩展中遇到并且断裂比一层高分子链强韧很多的物体,例如纳米晶域(Science Advances, 5, eaau8528 (2019); PNAS116, 10244 (2019).)
人体的结缔组织,如韧带、肌腱和软骨,都能与骨头形成高强度和高韧性的连接,且界面疲劳阈值达800 J/m2以上。这类结缔组织与骨头的抗疲劳黏合源自其界面的梯度结构和有序纳米晶域(图3)。受这类生物组织的启发,今日发表在Nature Communications上的文章中,MIT赵选贺教授团队和南方科技大学刘吉教授合作,提出了抗疲劳水凝胶界面粘接的原理:在粘接界面引入有序纳米晶域以限制疲劳裂纹的扩展。
图3.抗疲劳水凝胶粘接的设计原理:在粘接界面引入有序纳米晶域以限制疲劳裂纹的扩展(Nat. Commun., 2020, https://doi.org/10.1038/s41467-020-14871-3)
为了验证水凝胶抗疲劳粘接的原理,该团队选用了常见的医用聚合物聚乙烯醇 (PVA),通过冷冻解冻和干燥-退火的处理,在水凝胶与基底界面引入有序晶域(图3)。为了定量表征水凝胶粘接界面的抗疲劳能力,团队成员设计了表征水凝胶粘接界面疲劳阈值的实验方法。与传统材料的疲劳测试不同,他们在水浴环境进行上万次水凝胶黏合层的疲劳剥离测试,以避免水凝胶的失水引起的材料失效和裂纹扩展。通过定量测量黏合界面的疲劳裂纹的扩展曲线,该团队发现传统高韧性水凝胶黏合的疲劳阈值只有68 J/m2,这和高韧性水凝胶的疲劳阈值相似(~50 J/m2),也与破坏一层无定形分子链所需要的能量吻合。而PVA水凝胶黏合界面的疲劳阈值能够达到800 J/m2,可比拟结缔组织与骨头连接界面的疲劳阈值。与此同时,他们通过30,000次的循环剥离实验进一步验证了这种界面的超高疲劳阈值(图4)。
这一抗疲劳水凝胶黏合设计适用于多种材料基底,如金属(钛、铝和不锈钢)、无机非金属(玻璃和陶瓷)、高分子(聚氨酯和聚二甲基硅氧烷),证实了该设计理念的普适性(图4)。
图4. 水凝胶-基底界面疲劳阈值的测量和验证
表面掠入射小角X射线散射结果(图5)表明,退火前,水凝胶-基底界面的纳米晶域为完全无序且结晶度低。退火后,结晶度提高,且纳米晶域在垂直界面方向的有序度显著提高。
图5. 干燥-退火过程中,水凝胶-基底界面晶域结构演变表征
全原子分子模拟结果(图6)表明,从纳米晶域中拉出一根分子链所需的能量约为50,000 kJ/mol,远高于断裂一根高分子链所需的能量(6,000 kJ/mol)。这也解释了为什么纳米晶域的引入能显著提高水凝胶材料的疲劳阈值。进一步的分子模拟结果显示,从纳米晶域-基底界面抽出一根分子链的能量能够达到70,000 kJ/mol,这进一步揭示了PVA凝胶-基底界面的抗疲劳本质。分子模拟的结果也与剥离实验中观测的水凝胶粘接断裂机理一致,该团队发现界面的疲劳裂纹扩展都发生在凝胶层(cohesive failure)而非黏合界面(adhesive failure)。
图6. 全原子分子模拟
此外,我们提出的抗疲劳水凝胶粘接的设计原理还可以与其他加工方法联合使用,如浸涂法。这一方法可以在不同材质和不同几何结构(玻璃光纤、玻璃管、不锈钢弹簧、树叶状橡胶、金属球窝关节)引入均匀的抗疲劳水凝胶涂层(厚度~20 um, 图7)。
图7. 多种材料复杂结构的抗疲劳水凝胶涂层
图8. 抗疲劳水凝胶涂层的低摩擦系数
此外,由于水凝胶特有的高含水量、低摩擦系数等优势,抗疲劳水凝胶涂层的引入也能有效的降低金属基底的摩擦系数和磨损系数(图8)。通过水凝胶和金属关节的高强度高韧性和抗疲劳黏合,能有效解决用水凝胶作为人造软骨所面临的技术挑战。
南方科技大学刘吉教授,MIT博士后林少挺,MIT博士生刘心悦和Syracuse University的Zhao Qin教授为论文的共同第一作者。
全文链接:
https://www.nature.com/articles/s41467-020-14871-3
来源:高分子科学前沿